
 
USDOT Region V Regional University Transportation Center Final Report 

 

 

 

 

IL IN 

WI 

MN 

MI 

OH 

NEXTRANS Project No. 158PUY2.2  

Stochastic Network Vehicular Origin-Destination Demand Using Multi-
Sensor Information Fusion Approaches 

By 

Han-Tsung Liou 
Postdoc Researcher 
Institute of Statistical Science 
Academia Sinica, Taipei, Taiwan 
iroya.liou@gmail.com  
 

and 
 

Shou-Ren Hu 
Professor 
Department of Transportation and Communication Management Science 
National Cheng Kung University, Tainan, Taiwan 
shouren@mail.ncku.edu.tw  
 

and 
 

Srinivas Peeta 
Professor 
School of Civil Engineering, Purdue University 
peeta@purdue.edu 
 

and 
 
Yong Hoon Kim 
Graduate student 
School of Civil Engineering, Purdue University 
kim523@purdue.edu  
 

and 
 

Choungryeol Lee 
Graduate student 
School of Civil Engineering, Purdue University 
Lee1210@purdue.edu  

http://www.purdue.edu/discoverypark
mailto:iroya.liou@gmail.com
mailto:shouren@mail.ncku.edu.tw
mailto:peeta@purdue.edu
mailto:kim523@purdue.edu
mailto:Lee1210@purdue.edu


 
 

DISCLAIMER 

Funding for this research was provided by the NEXTRANS Center, Purdue University under Grant 
No. DTRT12-G-UTC05 of the U.S. Department of Transportation, Office of the Assistant Secretary 
for Research and Technology (OST-R), University Transportation Centers Program. The contents 
of this report reflect the views of the authors, who are responsible for the facts and the accuracy 
of the information presented herein. This document is disseminated under the sponsorship of 
the Department of Transportation, University Transportation Centers Program, in the interest of 
information exchange. The U.S. Government assumes no liability for the contents or use thereof. 



 
USDOT Region V Regional University Transportation Center Final Report 

TECHNICAL SUMMARY 

NEXTRANS Project No 019PY01Technical Summary - Page 1 

 

IL IN 

WI 

MN 

MI 

OH 

NEXTRANS Project No. 158PUY2.2        Final Report, April 21, 2017 

Title 
158PUY2.2/ Stochastic Network Vehicular Origin-Destination Demand Using Multi-Sensor 
Information Fusion Approaches 

Introduction 
An origin-destination (O-D) trip matrix characterizes the demand pattern in a vehicular traffic 
network. It is a crucial component for long-term transportation planning and short-term traffic 
management. Hence, the accurate estimation of the O-D matrix is a well-studied problem. 
Traditional approaches for estimating O-D matrices are based on manual surveys, such as 
household interview, license plate recording, and postcard mail-back. However, they suffer from 
high costs and potential data sampling or recording errors. To resolve the O-D data collection 
issues, methods have been proposed to estimate O-D trip matrices from link traffic counts or 
flows [1]. They include generalized least squares [2], maximum likelihood [3], entropy 
maximization [4], Kalman filter [5], and Bayesian inference [6] studies. However, using link flows 
to infer the O-D matrix can entail multiple solutions, as these problems are typically 
underdetermined. Two approaches are proposed in the literature to address this 
underdetermined problem. The first approach is to solve the problem using a bilevel model [7], 
[8] which estimates the O-D matrix at the upper level based on some pre-specified user route 
choice decision rules (for example, under user equilibrium (UE) or stochastic user equilibrium 
(SUE)) in the lower level model. The second approach is to determine the O-D matrix from link 
flows using a path flow estimator (PFE) [9], [10]. Both approaches assume that specific travelers’ 
path choice decision rules are known based on some traffic assignment principles. However, the 
path choice decisions are not easy to obtain in practice. 

With the rapid development of intelligent transportation systems (ITS) and sensor technologies, 
various sensors have been developed for traffic monitoring and data collection. In general, traffic 
sensors can be classified into two types: passive and active sensors. Passive sensors, such as 
vehicle detectors (VDs), are used to observe point measurements (e.g., link flow, occupancy, and 
speed) [11]. Active sensors, such as video cameras, are used for applications such as automatic 
vehicle identification (AVI) and license plate recognition (LPR). Through two-way communication 
between roadside equipment and an onboard unit, an active sensor based system provides point-
to-point measurements (e.g., travel time, vehicle trajectory, and vehicle identification) [12], [13]. 
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Past studies have incorporated link flow, path flow and/or vehicular flow pattern information 
provided by active sensors for the O-D matrix estimation problem [14], [15], [16], [17], [18], [19], 
[20]. Hence, they leverage vehicle trajectory information [14], [15] and path flow information 
[16], [17], [18], [19], [20], in addition to link flow information, for the network O-D matrix 
estimation problem.  

The network sensor location problem (NSLP) [21], [22] seeks to determine the minimum number 
of traffic sensors and their installation locations to completely infer the network traffic 
conditions, and is similar to the observability problem [23]. From a network flow observability 
perspective, partial link flow information collected using strategic sensor deployment can infer 
full link flow information [22], [24], [25], and the upper bound on the number of required sensors 
without path enumeration can be derived [24], [25]. It has been applied in the context of route 
guidance [26], travel time data collection [27], travel time estimation [28], [29], and link flow 
inference [22], [23], [24], [30]. The quantity and content of the data collected from traffic sensors 
can substantially affect the performance of the O-D matrix estimation models [31], [32], [33]. 
Hence, the methods used to solve the NSLP can be adapted for the O-D matrix estimation 
problem [21], [22], [34]. However, past studies only sequentially solved the sensor location and 
O-D matrix estimation problems, using traffic information from a single sensor type [21], [35], 
[36], [37], [38] or from heterogeneous sensors [19], [39], [40], [41]. Castillo et al. used scanning-
link information collected by plate scanning technique for link and/or route flow estimation [14], 
[35], [38], [39], [40]. In addition, Castillo et al. further defined the flow amount of information 
(FAO) to analyze the number of linearly independent scanning links for route flow reconstruction 
[39], [40] Some of their studies solved the network O-D matrix estimation problem and the 
heterogeneous sensors deployment problem (HSDP) in an integrated manner either by algebraic 
based methods [39], [40] or a Bayesian approach [37], [38]. A strategic sensor deployment plan 
for different sensor types and installation locations has important implications for the 
performance of the network O-D matrix estimation model, and the discrepancy between the 
estimated and true O-D flows is crucial information to verify the appropriateness of the sensor 
deployment strategy. That is, solving for the sensor deployment strategy and then assuming it as 
given in the O-D matrix estimation problem in the sequential approach does not leverage 
information needs related to accurate O-D matrix estimation to guide the selection and location 
of deployed sensors. Hence, there is a key need to solve the heterogeneous sensor deployment 
problem and network O-D matrix estimation problem in an integrated manner. 

The problem of solving the heterogeneous sensors deployment problem and network O-D matrix 
estimation problem is referred to as the HSDP-OD problem in this study. The corresponding 
problem using traffic information from a single sensor type is labeled the NSLP-OD problem. Past 
studies to solve the NSLP-OD or HSDP-OD problem usually use two steps in a sequential 
approach. The first step determines a strategy for locating sensors in the network, and the second 
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step solves the O-D matrix estimation problem based on the sensor deployment from the first 
step [14], [19], [21], [35], [36], [38], [39], [40], and [41]. Hence, the sequential approach is a one-
shot procedure as the O-D matrix estimation results are not fed back to the NSLP/HSDP stage. 
Castillo et al. [37] propose a Wardrop-minimum variance (WMV) method assignment problem 
and Bayesian network (BN) approach for the link and O-D flow estimation problem. The NSLP-OD 
problem is solved by sequentially selecting one link as the equipped link to update the O-D matrix 
estimate until the budget constraint is violated. However, some specific input data or model 
assumptions are typically required in a sequential approach for the NSLP-OD or HSDP-OD 
problem. For example, a link-path incidence matrix is necessary for the developed sensor location 
and O-D matrix estimation models [14], [21], [35], [36], [37], [38], [40], [41]; this may entail 
solving a user equilibrium traffic assignment problem to identify the paths [37]. However, 
assumptions on the availability of some additional input data may not be realistic from a data 
availability perspective. For instance, the sensor location models require prior O-D/path flow 
information [35], [36], [37], [40], [41], or link flow proportions [37], [41] to determine the sensor 
locations. The O-D matrix estimation models assume the prior O-D/path information [14], [21], 
[35], [36], [37], [38], [41], or path assignment probability to be known [41], or that link flow 
proportions can be estimated [21], [37].  

Unlike previous studies for the NSLP-OD problem [14], [21], [35], [36], [37], [38], [39], [40], [41], 
this study specifically investigates the HSDP-OD problem. And, unlike the sequential approach 
used previously for the HSDP-OD problem [19], [41], this study addresses the HSDP-OD problem 
in an integrated manner using a two-stage optimization model where the error on the O-D matrix 
estimate in the second-stage model is fed back to modify the sensor deployment strategy in the 
first-stage model until some pre-specified error thresholds are met. In the first stage, the HSDP 
model determines the optimal numbers of active (camera-based license plate recognition), 
passive (vehicle detector) sensors, and their installation locations to maximize the traffic 
information available for the O-D trip matrix estimation. This traffic information consists of the 
observed link flows, path trajectories and path coverage information. In the second stage, the O-
D matrix estimation model leverages this traffic information to determine the network O-D 
matrix that minimizes the error between the observed and estimated traffic flows (link, O-D 
and/or path). Two network O-D matrix estimation models are proposed. The link-based model 
determines the O-D matrix based on the link-node incidence matrix under flow conservation 
rules without requiring strong assumptions related to prior knowledge/data. The path-based 
model assumes a given link-path incidence matrix and leverages active sensor information. A 
specially designed feedback mechanism is proposed to update parameters (weights of the 
objective function terms) in the heterogeneous sensors deployment model of the first stage 
based on the performance of the O-D matrix estimates in the second stage. Through this 
feedback mechanism, the proposed two-stage model captures the interactions between the 
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heterogeneous sensor deployment strategy and the network O-D matrix estimation problem. 
This establishes a bridge between the HSDP and the O-D matrix estimation problem, and 
represents an integrated approach to solve the HSDP-OD problem. The results from an empirical 
study using the Sanmin network in Taiwan indicate that the proposed integrated optimization 
model can provide network O-D matrix estimates as well as the numbers and locations of the 
two sensor types consistent with the corresponding objectives at the two stages. 

The remainder of this report is organized as follows. Methodology characterizes the 
heterogeneous sensor based traffic information and presents the integrated model for the HSDP-
OD problem, including the formulations of the heterogeneous sensors deployment and O-D 
matrix estimation models. It describes the solution procedure with the feedback mechanism to 
solve the integrated model. Findings discusses the results of numerical experiments based on 
real road network. Finally, concluding remarks are presented in Summary and Recommendations. 

Methodology 
This study proposes an integrated two-stage optimization model for the HSDP-OD problem. The 
first stage is the heterogeneous traffic sensors deployment model, which seeks to determine the 
sensor deployment strategy that optimizes the traffic information available to the second-stage 
O-D matrix estimation problem. The weights of the objective function terms in this model are 
functions of the errors between the observed and estimated link and path/O-D flow data 
determined in the second-stage model. The second stage is the O-D matrix estimation model that 
leverages the traffic information obtained in the first-stage model to determine the O-D matrix 
that minimizes the errors between the observed and estimated traffic flow data. The traffic 
information from the first stage and the traffic flow data errors from the second stage integrate 
this two-stage optimization model. The two-stage model for the HSDP-OD problem is described 
hereafter. 

A. Heterogeneous Sensor Based Traffic Information 

The passive sensors used in this study are VDs and the active sensors are LPRs. The 
heterogeneous sensors deployment model determines the optimal heterogeneous sensor 
deployment strategy, in terms of the selection of the numbers of LPRs, VDs, and their installation 
locations, to maximize the available traffic information for the O-D matrix estimation problem. 
The observed traffic information using the VDs and LPRs can be categorized into three types: (i) 
link flow information, (ii) path trajectory information, and (iii) path coverage information. 

Link flow information 
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Link flow information can be collected on links equipped with either VD or LPR sensors. Hence, 
the numbers of VDs and LPRs deployed can be regarded as the number of pieces of observed link 
flow information, and are formulated using 0-1 integer decision variables as follows. 

( ), ,ij ij
ij

x y i j
∈

+ ∀ ∈∑
A

NLink flow information:                                                                                                    (1) 

where,  

 
1,

;
0,ij

ij
x 

= 


 if link  is equipped with a VD
                 otherwise                   

 

1,
;

0,ij

ij
y 

= 


 if link  is equipped with an LPR
                   otherwise                     

 

 : linkA  set;  

: nodeN  set.  

 Path trajectory information 

For a given link-path incidence matrix, each element in this matrix indicates if a specific path 
passes through a link. Hence, such an element in a link-path incidence matrix can be expressed 
in Eq. (2). 

1,
.

0,
p

ij

p ij
δ


= 


 if path  contains link 
          otherwise              

                                                                                                                     (2) 

The path trajectory information of a given O-D pair can be collected by LPR sensors installed at 
various links along this specific path, and is formulated by the LPR decision variable and the delta 
function as follows. 

p
ij ij

p ij
y δ

∈ ∈

⋅∑∑
P A

Path trajectory information:                                                                                                       (3) 

where P is the path set. 

Besides its capability to collect link flow information, an LPR sensor is able to actively track a 
vehicle’s identification. Thereby, installing LPR sensors at some strategic links would provide full 
or partial path flow information of a given O-D pair. As a result, the flow on a given O-D pair can 
be (partially) observed by summing up the corresponding (partially) collected path flows. 

Path coverage information 
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When different paths share the same path trajectories, it is difficult to identify the observed path 
flows of these paths. Based on the path trajectory information of a given link-path incidence 
matrix, a distinction function [35], [42] is introduced to distinguish between paths, and expressed 
in Eq. (4). 

0 1

0 1 1,( , , ) .
0,

p p
p ij ij

ijd p p δ δδ
 ≠= 


 if 
   otherwise 

                                                                                                                      (4) 

The distinction function identifies the difference between two paths by comparing their 
trajectories. Specifically, if ),,( 10 p

ijppd δ   is 1, it means that link ij is equipped with an LPR sensor, 

and this LPR-equipped link is able to distinguish between paths  and  based on a given link-
path incidence matrix. 

Similar to the definition of the path trajectory information, the path coverage information is 
formulated by the LPR decision variable and the distinction function as follows. 

 0 1 0 1( , , ), ,p
ij ij

ij
y d p p p pδ

∈

⋅ ∀ ∈∑
A

PPath coverage information:                                                                   (5) 

When the value of Eq. (5) is 0, it indicates that a current LPR sensor deployment configuration 
cannot distinguish the difference between paths  and . When the value of Eq. (5) is 1 or 
greater than 1, it means that at least one LPR sensor can distinguish the difference between paths 

 and . In addition, in order to maximize the capacity of the path differentiation capability 
of an LPR sensor, a path coverage variable,  0 1,p p

m  is defined as follows. 

 0 1
0 1 0 1

,
( , , ) , ,p

ij ij p p
ij

y d p p m p pδ
∈

⋅ ≥ ∀ ∈∑
A

P                                                                                                      (6) 

where,  

0 1

0 1

,

1,
.

0,p p

p p
m


= 


 if paths  and  can be differentiated by LPR sensors
                                     otherwise                                    

 

Eq. (6) depicts that the path coverage variable is the lower bound for the number of pieces of 
path coverage information, where the collected path coverage information for the entire 
network by deploying an LPR sensor at link ij is as large as possible. 

B. Heterogeneous Sensors Deployment Model 

The first-stage heterogeneous sensors deployment model is formulated as an integer program to 
determine the numbers of LPRs, VDs, and their installation locations to maximize the available 
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traffic information subject to constraints on the available budget, network topology, and set 
covering rules. To quantify the relative contributions of the three types of traffic information to 
the estimation of the O-D matrix in the second stage, weights are introduced for the 
corresponding terms in the first-stage objective function. Thereby, the heterogeneous sensor 
deployment strategy in the first stage, through the three types of traffic information observed 
using these sensors, is linked to the second-stage objective of determining the O-D matrix with 
the minimum amount of error. The first stage model formulation is as follows. 

0 0 1 1
0 10 0 1 1

0 10 1
,,

,

ˆMax { [ , ( )] ( )}

ˆ        { [ , ( )] }

ˆ ˆ        { [ , ( , )] }

ij

r s r s
p p

ij ij ij ij
ij

p rs p
ij ij

p ij

r s r s
p pt t

p p

w v x y

w t y

w t t m

α

β

γ

α ε

β ε δ

γ ε

∈

∈ ∈

∈

⋅ +

+ ⋅ ⋅

+ ⋅

∑

∑∑

∑

A

P A

P

                                                                                                   (7) 

Subject to 

0 1
0 1 0 1 0 1

,
( , , ) , , |p

ij ij p p
ij

y d p p m p p p pδ
∈

⋅ ≥ ∀ ∈ ≠∑
A

P  (8) 

( ) 1,p
ij ij ij

ij
x y pδ

∈

+ ⋅ ≥ ∀ ∈∑
A

P  (9) 

1,ij ijx y ij+ ≤ ∀ ∈ A  (10) 

D ij L ij
ij ij

C x C y C
∈ ∈

⋅ + ⋅ ≤∑ ∑
A A

 (11) 

where, 

( )DC : the cost of a VD passive sensor ;  

( )LC  the cost of an LPR active sen: sor ;  

C: total budget;  

ij ijα : initial weight of link flow information for link ;
 

ij

p p ijβ th: initial weight of the  path trajectory information for link ;
0 0 1 1

0 0 1 1
0 1

0 0 1 1

0 1
,

, ,r s r s
p p

r s r s
t t

r s r s

p t p t

t t

γ : initial weight of the path coverage information for the  path of  an  thed  path of  

              where   and  are the two different O-D

 

 pairs;
 

wα ⋅ weight for link flow informat[ ]: ion;  

wβ ⋅ weight for path trajectory informat[ ]: ion;  

wγ ⋅ weight for path coverage informat[ ]: ion;  

ˆ( ) :
ˆ

ij

ij

v ij
v ij

ε error function based on link flow estimate at link , 

          where  is the estimated flow on link ; 
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ˆ( ) : ,
ˆ

rs

rs

t rs
t rs

ε error function based on O-D flow estimate for O-D pair  

           where  is the estimated flow for O-D pair ;
 

0 0 1 1

0 0 1 1

ˆ ˆ( , ) :r s r st t
r s r s

ε error function based on O-D flow estimates 
                   for O-D pairs  and .

 

 
Eq. (7) is the objective function whose goal is to maximize the number of pieces of observed 
traffic information on link flow, path trajectory, and path flow coverage. The decision variables 
are ijx , ijy  and 0 1,p p

m  . It is assumed here that maximizing the number of pieces of these three 

types of information collected using the VDs and LPRs will maximize the traffic information 
available to the second stage problem. The three terms in the objective function correspond to 
the observed link flow information, path trajectory information, and path coverage, respectively. 
The corresponding weights ( [ ], [ ],  [ ]w w wα β γ⋅ ⋅ ⋅  ) reflect the relative importance of each type of 

information for the O-D matrix estimation problem. It is important to note here that each of the 
weights depends on a pre-determined initial weight and errors on link flow and O-D matrix 
estimates in the second-stage model. In the solution procedure described in Section III, these 
weights are iteratively updated when the O-D matrix estimation results are obtained in the 
second stage. Eq. (8) introduces the path coverage variable, 0 1,p p

m  and states that if a path can 

be distinguished by at least one LPR sensor based on the distinction function from a given link-
path incidence matrix, this path is covered. The number of the path coverage variables is 
dependent on the size of the path set. This number can be large, and some analytical approaches 
have been proposed to reduce this size [35]. Eq. (9) illustrates the set covering rule, which 
indicates that each path should be observed by at least one VD or LPR sensor [35], [42]. Eq. (10) 
reflects that a link is at most equipped with one sensor, which can be either active or passive. Eq. 
(11) is the budget constraint that incorporates the unit costs of both sensor types. Generally, the 

ratio is approximately 100 since the system infrastructure of an active-type sensor system 

requires higher initial and maintenance costs. 

C. Network O-D Matrix Estimation Models Using Heterogeneous Sensor Based Traffic 
Information 

When a link is equipped with a VD or LPR sensor ( ijx  or ijy ), the corresponding link flow 

information, ( , )ij ij ijv x y  can be collected and/or observed. If an LPR sensor deployment 

configuration is determined, the collection of  ijy ’s and 0 1,p p
m ’s,, which are respectively denoted 

as  Y and M, can identify the path flows based on the mapping of the observed path trajectory 
information and path coverage variable in a given link-path incidence matrix. The observed path 
flow information is defined as ( , )rs

pf Y M . 
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The heterogeneous sensor deployment model developed in the first stage of the integrated 
model can provide subsets of link and/or path flows. The network O-D matrix estimation model 
developed in the second stage leverages this traffic information on the observed link/path flows 
and path trajectory/coverage information. Accordingly, two versions of the network O-D matrix 
estimation model are developed. One is the link-based model, which abides by the link flow 
conservation rule based on a link-node incidence matrix. The other is the path-based model 
which estimates the path flows in light of a given link-path incidence matrix. Both models are 
formulated as nonlinear least squares (NLS) programs that minimize the errors on the estimated 
link/path flows and/or O-D matrix. The models are discussed hereafter. 

Link-based O-D matrix estimation model 

The link-based model is developed based on a non-proportional traffic assignment principle, and 
is formulated as a nonlinear program with linear constraints as follows. 

2

( , )

2

ˆ ( , )
Min [ ]

ˆ ( , )

ˆ ( , )
       [ ]ˆ ( , )

ij ij ij ij

i j ij ij ij ij
ij ij

rs rs
p p

p p
rsrs

r s pp
r s pr s p

v v x y
v v x y

f f

ff

∈
∈ ∈

−

+ −

∑ ∑ ∑

∑ ∑
∑∑ ∑∑∑∑∑∑

A
A A

Y M

Y M

                                                                                 (12) 

Subject to 

ˆ 0⋅ =V L  (13) 
| |

ˆˆ ˆ ,rs
ir rj

i s j
v t v r

∈

+ = ∀ ∈∑ ∑ ∑
S

S
R  (14) 

| |
ˆˆ ˆ ,rs

is sj
i r j

v t v s
∈

= + ∀ ∈∑ ∑ ∑
R

R
S  (15) 

| |
ˆ , , ,rs rs

p
p

t f r s p
∈

≥ ∀ ∈ ∈ ∈∑
P

P
R S P  (16) 

ˆ 0, ,rst r s≥ ∀ ∈ ∈R S  (17) 
ˆ 0,ijv ij≥ ∀ ∈ A  (18) 

where, 

ˆ :ijv ijestimated flow on link ;   

ˆ :V a vector of estimated link flows;  
( , ) :ij ij ijv x y ijobserved link  flow based on the deployment 

                  of VD or LPR sensors; 
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th( , ) :
;

rs
pf p rsY M observed  path flow between O-D pair  

                     based on the deployment of LPR sensors
 

ˆ : ;rst rsestimated O-D flow between pair  
: ;L link-node incidence matrix  
:R a set of origin nodes;  
:S a set of destination nodes;  
: ;ijyY  the collection of  

0 1,
: .

p p
mM  the collection of  

 
Eq. (12) is the objective function, which minimizes the errors between the (partially) observed 
and estimated link, and O-D flows. The flow estimation errors are normalized to circumvent the 
effect of difference in the orders (in terms of the absolute values) of the link and O-D flow 
estimates. In Eq. (12), two categories of the traffic information are collected. One is the observed 
link flow, ( , )ij ij ijv x y which is provided by the VD and LPR sensors. The other is the observed path 

flow, ( , )rs
pf Y M   which is determined by the LPR sensor deployment configuration and path 

coverage variable conditions (i.e., Eq. (8)). The observed O-D flows are the summation of the 
partially or fully observed path flows from LPR sensors. Because sensors cannot be deployed on 
all links of a network due to the budget constraint, the observed traffic information may include 
some (partial) link and/or path flows for a given O-D pair. Eq. (13) is the link flow conservation 
constraint based on a link-node incidence matrix while origin and destination nodes are excluded 
from the flow conservation rule. When origin or destination nodes are intermediate nodes, the 
flow conservation rule for the origin and destination nodes is described by Eqs. (14) and (15), 
respectively. Eq. (14) states that the flow departing from an origin node is equal to sum of the 
flow originating at the origin and the pass-through flow(s). Similarly, for the destination nodes, 
Eq. (15) states that the incoming link flows to a destination node are composed of the destination 
flows and pass-through flow(s). Eq. (16) is the inequality constraint indicating that, for a particular 
O-D pair, the estimated O-D flow should be greater than or equal to the O-D flow partially or fully 
observed by LPR sensors. Eqs. (17) and (18) are the non-negativity constraints on the estimated 
O-D and link flows, respectively. 

Path-based O-D matrix estimation model 

The O-D matrix estimation model can alternatively be formulated as a path-based model under a 
given link-path incidence matrix by using path flows as the decision variables. It is developed by 
using a path flow estimator, and is formulated as a nonlinear program with linear constraints as 
follows. 



NEXTRANS Project No 019PY01Technical Summary - Page 11 

 

2

( , )

2

ˆ ( , )
Min [ ]

ˆ ( , )

ˆ ( , )
       [ ]ˆ ( , )

ij ij ij ij

i j ij ij ij ij
ij ij

rs rs
p p

p p
rsrs

r s pp
r s pr s p

v v x y
v v x y

f f

ff

∈
∈ ∈

−

+ −

∑ ∑ ∑

∑ ∑
∑∑ ∑∑∑∑∑∑

A
A A

Y M

Y M

                                                                                  (19) 

Subject to 

ˆ 0⋅ =F δ  (20) 
ˆ , , ,rs rs

p pf f r s p≥ ∀ ∈ ∈ ∈R S P  (21) 
ˆ 0, , ,rs

pf r s p≥ ∀ ∈ ∈ ∈R S P  (22) 
ˆ 0, ( , )ijv i j≥ ∀ ∈ A  (23) 

where, 
ˆ :F a vector of estimated path flows;  

:δ link-path incidence matrix;  
ˆ : .rs

pf p rsthestimated path flow for the  path of O-D pair  
 

Eq. (19) is similar to Eq. (12) and includes two minimization terms: (i) the normalized errors 
between observed and estimated link flows, and (ii) the normalized errors between observed and 
estimated path flows. Eq. (20) is the flow conservation constraint under a given link-path 
incidence matrix. Eq. (21) is the inequality constraint indicating that, for a particular O-D pair, the 
estimated path flow should be greater than or equal to the path flow partially or fully observed 
by LPR sensors. Eqs. (22) and (23) are the non-negativity constraints for both path and link flows. 

Note that the link-based O-D matrix estimation model estimates the network O-D flows using the 
simplified flow relationship between origin/destination nodes and adjacent links (see Eqs. (14) 
and (15)), and infers link flows based on a link-node incidence matrix (see Eq. (13)). For small 
networks, composed of a few nodes and links, a link-based O-D matrix estimation model could 
provide satisfactory solutions for both the link and O-D flow estimates. If a network is large or has 
a complex structure, the link-based model may not adequately capture the flow relationship 
between origin/destination nodes and intermediate links. Then, a path-based approach, such as 
the PFE method, which assumes a known link-path incidence matrix, could be used to solve the 
network O-D matrix estimation problem.  

An iterative solution procedure is designed to determine the network O-D matrix and link flow 
estimates. Details can be found in Hu et al. (2016). 
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Findings 
To evaluate the proposed HSDP-OD model, different initial values are specified for the weights 
of the three different information types in Eq. (7) based on the amount of information they are 
expected to provide for the second stage. As the path coverage information provides inputs 
related to both path flows and O-D flows, it is assigned the highest weight. The path trajectory 
information provides data on specific vehicular movements, which can be more insightful for O-
D flows than the link flow information.  
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Fig. 1 The Sanmin network 

Hence, it is assigned the second highest weight. Based on this, for the experiments in this section, 
the initial value of ijα  is 2, 

ij

pβ   is 10, and 0 0 1 1
0 1,r s r s

p pt t
γ   is 20 in the heterogeneous sensors deployment 

model. The HSDP-OD model is evaluated using a real road network in Sanmin District, Kaohsiung 
City, Taiwan (see Figure. 1). 

 

A. Experimental Design and Assumptions 
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The real road network considered is located in the Sanmin district in Kaohsiung City, Taiwan, and 
is referred to as the Sanmin network in this study [44]. The Sanmin network consists of 72 nodes, 
202 unidirectional links and 156 O-D pairs. The Sanmin network is located in the central district 
of Kaohsiung City in Southern Taiwan. 

The true O-D flow data was obtained from a home survey of the Kaohsiung metropolitan area 
[45]. For model evaluation purposes, we obtained only the traffic data relevant to the Sanmin 
district. This dataset is used to evaluate the performance of the HSDP-OD model. Based on the 
cost databases from the RITA (U.S. Department of Transportation), the unit costs for an LPR and 
a VD were set at $70,000 and $600, respectively, and the total budget was assumed to be 
$3,000,000. The termination criteria for the solution procedure are that the average mean 
absolute percent error (MAPE) of the link flow estimates is less than 15% and the average MAPE 
of the O-D flow estimates is less than 20%. As the Sanmin network is relatively large, the 
termination criterion is less tight for the O-D flow estimates compared to that of the fishbone 
network. Both the link-based model and the path-based O-D matrix estimation models are 
analyzed, and the termination criteria for both models are the same (15% - 20%).  

B. Performance of the Link- and Path-based O-D Demand Estimation Models 

Based on the above experimental setup and assumptions, Figure 2 shows the results of the link 
and O-D flow estimates across different iterations under the link-based model. Figure 3 shows 
the results for the path-based model. 

Figure 2 illustrates that the accuracy of O-D flow estimates using the link-based O-D flow 
estimation model depends not just on the accuracy of the link flow estimates (see the seventh 
and eighth iterations). As the flow conservation rule between O-D and link flows (Eqs. (13)-(15)) 
is the only key characteristic of the link-based O-D matrix estimation model, it exhibits limited 
capability to identify the possible O-D flow estimates in a large bidirectional network. This is 
illustrated by the MAPEs in most iterations of Figure 2 being above 20%. Despite this deficiency, 
the link-based O-D estimation model terminates at the fifteenth iteration as the termination 
criterion is met. The average MAPE of the link flow estimates is 12.7%, and the average MAPE of 
the O-D matrix estimates is 18.5%. 
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Fig. 2. MAPEs of the link-based model 

 
Fig. 3. MAPEs of the path-based model 

The results for the path-based O-D matrix estimation model are shown in Figure 3. The 
performance in terms of the estimation accuracy of both the link and O-D flows is satisfactory. 
The similarity in the trends of the two MAPE plots in Figure 3 indicates that the accuracy of the 
O-D flow estimates depends on that of the link flow estimates as the spatial relationship between 
links and paths is pre-determined by the given link-path incidence matrix. The path-based model 
terminates at the eighth iteration; the average MAPE of the link flow estimates is 0.0% and that 
of the O-D flow estimates is 1.2%. The sensor deployment configuration corresponding to the 
link-based model is shown in Figure 4. It indicates that 142 sensors (42 LPR sensors and 100 VDs) 
are required, and the sensor deployment rate is 70%. The sensor deployment configuration 
corresponding to the path-based model is shown in Figure 5, and again 142 sensors (42 LPR 
sensors and 100 VDs) are required. However, the sensor location deployment pattern for the 
path-based model is different from that of the link-based model. 
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Fig. 4. Optimal sensor deployment configuration for the link-based model 

Based on the optimal sensor deployment configuration, the link-based and path-based O-D 
matrix estimation models are compared using partial and full VDs only deployments (142 and 
202 VDs, respectively) and both VDs and LPRs. The partial VD only deployment scenario is 
assumed to follow the optimal sensor location deployment strategies under the link-based model 
(i.e., the fifteenth iteration in Fig. 2) and the path-based model (i.e., the eighth iteration in Fig. 
3). The results are shown in Table I. 
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Fig. 5. Optimal sensor deployment configuration for the path-based model 

Table I illustrates that under the link-based O-D matrix estimation model, using both VDs and 
LPRs reduces the average MAPE for O-D flow estimates from 63.8% (partial VD only: 
replacement), 98.0% (partial VD only: fixed) or 74.6% (full VD only) to 18.5%. Similarly, under the 
path-based O-D matrix estimation model, using both VDs and LPRs reduces the average MAPE of 
O-D flow estimates from 31.8% (partial VD only: replacement), 46.6% (partial VD only: fixed), or 
31.8% (full VD only) to 1.2%. The underlying reasoning is similar to that discussed for the fishbone 
network case related to the valuable data that LPRs can additionally observe compared to VDs. 
Further, the path-based O-D matrix estimation model, which explicitly captures path-related 
information by using the additional path flow information provided by the LPR sensors, 
outperforms the link-based O-D matrix estimation model. 
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TABLE I O-D and Link Flow Estimates for the Sanmin Network 

Data source O-D flow estimation 
model 

Average MAPE for O-D 
flow estimates 

Average MAPE for link 
flow estimates 

142 VDs 
(Replacement) Link-based model 63.8% 28.3% 

142 VDs 
(Fixed) Link-based model 98.0% 21.1% 

202 VDs Link-based model 74.6% 0.0% 
42 VDs & 100 LPRs Link-based model 18.5% 12.7% 
142 VDs 
(Replacement) Path-based model 31.8% 3.2% 

142 VDs 
(Fixed) Path-based model 46.6% 1.3% 

202 VDs Path-based model 31.8% 0.0% 
42 VDs & 100 LPRs Path-based model 1.2% 0.0% 

 

C. Discussion 

The link-based O-D matrix estimation model expresses the relationship between O-D and link 
flows by using the flow conservation rules (Eqs. (13)-(15)). The link-based model has two issues. 
First, it cannot adequately identify possible O-D flows in a large bidirectional network. Second, 
the accuracy of the O-D flow estimates does not depend only on the accuracy of link flow 
estimates. The flow conservation rules cannot completely describe the spatial relationships 
between O-D and link flows. Two approaches can be used to address these issues. The first 
approach is to incorporate multiple traffic data sources that can provide information not only on 
link flows, but also on other aspects such as path trajectories/flows (note the reduced MAPEs for 
the link-based model in TABLE I when both VDs and LPRs are used). The second approach 
leverages the knowledge of a known link-path incidence matrix as part of a path-based O-D matrix 
estimation model, which can capture the causal relationships among the O-D, path and link flows 
(note the performance of the path-based models in TABLE II using VDs only or VDs and LPRs). 

Summary 
This study proposes a two-stage optimization model for the HSDP-OD problem. The 
heterogeneous sensors deployment model in the first stage incorporates three sources of 
observed traffic information (link flow, path trajectory and path coverage) into an integer 
program. The O-D matrix estimation model in the second stage is constructed as link-based and 
path-based NLS programs. The following summarizes the key findings of this study. 

 The usage of LPR sensors in addition to the VDs can significantly enhance the accuracy of 
the O-D matrix estimation. That is, there is value to considering heterogeneous sensors that 
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provide observations of traffic data beyond just link flows, such as path trajectories, and 
partial path or O-D flows, etc.  

 Integrating the determination of the sensor deployment strategy with that of the accuracy 
of estimating the O-D matrix enables a more holistic perspective to addressing both 
problems by leveraging their interactions.  

Recommendations 
In this study, we solved the heterogeneous sensors deployment and network O-D matrix 
estimation problems in a two-stage iterative model. Two potential future research directions are 
as follows.  

 First, the feedback criteria used in the two-stage model can be based on other 
representations of the errors. 

 Second, because the partially measured link or path flows by different sensors are 
associated with various degrees of measurement errors, and the assignment mappings 
between a set of unknown O-D flows and path/link flows are random variables determined 
by travelers’ route choice decisions, the HSDP-OD problem can be modeled as a state 
estimation problem under these traffic and/or users’ route choice uncertainties. 
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